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Generalized Complex Spectral Decomposition
for a Quantum Decay Process
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By extending the notion of mixed states to functionals acting on the space of observables
with diagonal singularity we obtain a well-defined complex spectral decomposition
of the time evolution for a quantum decaying system. In this formalism, generalized
Gamow states are obtained with well-defined physical properties.
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1. INTRODUCTION

In recent years, we applied functional analysis technics for the treatment of
guantum systems with continuous spectrum. We considered the scattering problem
and its intrinsic irreversibility (Laura, 1997), the approach to statistical equilibrium
of a quantum oscillator in a thermalized field (Laura and Castagnino, 1998a), and
the possibility to define norm and energy of a Gamow vector related to simple poles
of the resolvent (Castagnirat al,, 2001a,b; Castagnino and Laura, 1997; Gadella
and Laura, 2001). We also used a generalized quantum formalism suitable for the
case in which the relevant quantum observables inafliggonal singularitiesn
the energy representation, i.e., observables represented by operators with matrix
elements of the formjw|O|w’) = O,8(w — &') + O, (Antoniou et al,, 1997,

Laura and Castagnino, 1998b). This formalism was developed by Antoniou and
Suchanecki (1994, 1995). The need of generalized vector spaces for the description
of quantum systems with continuous spectrum was emphasized by Bohm (1986,
1989, 1995) and Bohm and Gadella (1989). The identity and the Hamiltonian
operators are examples of observables with diagonal singularities in the energy
representation. The quantum states of this formalism are functionals over the space
O of operators representing observables. Mathematically, this means that the space
S of states is contained in the dual sp&@é. Physically, it means that the only
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thing that we canreally observe and measure are the mean values of the observables
O € Oinstatesp € S C O*: namely(O), = p[O] = (p|O). This approach is a
generalization of the usual TrQ), which is ill defined in systems with continuous
spectrum. For this formalism we developed a perturbative method to compute
the generalized eigenoperators and eigenstates of the Liouville—von Neumann
superoperator (Laut al,, 1999). This formalism was also applied to the problem

of decoherence (Castagnino and Laura, 2000).

In this paper, we analyze the generalized spectral decompositions for the time
evolution of the mean value of an observable having diagonal singularity, for the
case of a quantum system with a Hamiltonian having continuous spectrum and
a simple pole in the analytic extension of the resolvent, a prototype model for a
decay process.

In Section 2 we discuss the complex spectral decomposition of the
Hamiltonian which include Gamow vectors. In Section 3 we show that this spectral
decomposition cannot be used to compute mean values of observables represented
by operators with diagonal singularity. Generalized states and observables already
presented in Antonioat al. (1997) and Laura and Castagnino (1998b) are briefly
reviewed in Section 4. Sections 5 and 6 are concerned with the real and complex
spectral decompositions of the Liouville—von Neumann superoperator. General-
ized Gamow states are obtained in Section 6.

2. PURE STATES AND GAMOW VECTORS

Let us consider a HamiltoniaHg with continuous spectru™* = [0, oo).
We represent bjw) ({(w]) the right (left) eigenvector ofl; with eigenvaluev

Holw) = w|w), {(w|Ho=w{w|, 0<w< oo. Q)
We assumehat the right and left eigenvectors form an orthogonal complete
system, i.e.

| = /OO dolw)(w|, (we)=68w—w), Hy= /da)a)la))(a)|, 2
0

wherel is the identity operator. The eigenvectordfform the basis of what we
will call the “Hg representation” of the quantum system.
The full HamiltonianH of the interacting system will be

H=Hy+V = /dww|a))(a)| +/da)/-da)’war|a))(w/|, 3)

whereV,,, = (w|V ') is a regular function of the variablesandw’.

Since the time evolution of the system is determined by the Hamiltddian
it is convenient to change to a representation in terms of the eigenvectéts of
(the “H representation”). For each eigenvectol of the HamiltonianH, there
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is an eigenvectojw™) of the HamiltonianH, given by the Lippmann—-Schwinger
equation

1
+y
) = )+~ Vi), @)

We also assume that the vectpns ) generate a complete orthonormal system
| = /da)|a)+)(a)+|, (0T =8(w—w), H= /da)a)|a)+)(a)+|. (5)

The probability for an initially pure state) to be in the pure state/) at the
timet is

P(t) = |A®t)?,
A(t) = (¥ expiHt)|p) = /O do’ expi't)(¥lo ) (@' lp).  (6)

Letus assume that the analytic extension to the lower complex half flane (
ofthe integrand irA(t) has a simple pole at= z; in the lower complex half plane,
very close to the positive real axis. In this case the integral in Eq. (6) may have a
dominant contribution from the values®fclose tawg = $R(z). To describe these
resonant effects, it is convenient to deform the domain of integratios’farR ™
to a convenient curve in the complex plane. To perform this deformation, we need
the analytic extensiong), (Z|, |z"), and(z"|, of the corresponding eigenvectors
lw), (@], o), and{w™|. All these objects aréunctionalsacting over the usual
wave vectors. That s, if : Rt — C is a wave function in thély representation,
the “bra” (w| is alinear functionalwhose action ow is defined by

(wlp) = ¢().

Since our objects will be mainly complex, we must extend the functionals
to the complex plane. In the domain of the complex plane for which the analytic
extension of the functiop is well behaved, we define the linear functioral
trough the equation

(Zlp) = ¢(2), (7)

i.e. the functionakZ| acting on the functior : R — C gives the value of the
analytic extension of the functignat the pointz of the complex plane.

Analogously, ify : R — C is ‘a wave function in theH, representation,
the “ket” |w) is anantilinear functionaldefined by

(Vlw) = ¥ (o),

where the functiony : R* — C is defined by (w) = ¥(w). In the domain of the
complex plane for which the analytic extension of the functjois well defined,
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we define the antilinear functionfd) through the relation

Wiz =v@=v@, (8)

i.e. the functionalz), acting on the functiony : R* — C gives the value of the
analytic extension of the functiof at the poiniz of the complex plane.

Itis easy to prove that the functiondld and|Z), defined by the usual relations
(zlp) = (p|z) and(p|2) = (Z|p), verify (z| = (z] and|Z) = |Z). From these results
it follows that (Z] = (z] # (2|, i.e. if z is a complex number the(| is not the
adjoin of |z). This property justifies the use of a tilde)in the definition given
in Eqg. (7), which would not be necessary for real valmesw € R™, where(@ =
(w = (w].

The functionals defined in Egs. (7) and (8) are generalized left and right
eigenvalues of the Hamiltoniaf, with complex eigenvalues:

(ZIHo=z(Z|, Holz) = z|2).
According to Eq. (4) itis
o) = |w) + Rl@+i0)V]w), ('] = (o|+ (0|VR@—i0), )

where the resolverR(z) = (z — H)~1is an analytic function of the complex vari-
ablez, except for a cut ilR™. Therefore the analytic extensions|af™) and (w™ |
involve the analytic extension of the resolvent. We define the analytic extension
R*(2)(R™(2)) of the resolvenR(z) from the upper (lower) to the lower (upper)
complex half plane &s

R(2), zeC*
Rf(2) = :
contc+_,,R(s), ze C
cont.c_,,R(s), ze C*
R (2) = : (10)

R(2), ze C™
With these definitions the analytic extensiongwof) and{(w*| are
1z) =12+ R"(9VI2), (Z'|=(Z+ (VR (2. (11)

It can be proved that the “adjoint functional&"| and|z™), defined by the
relations(z*|¢) = (¢|z+) and (¢|21) = (ZT|), satisfy (z"| = (z'| and|z") =
1Z*).

3We use the notation caqt-+_, , to indicate the analytic continuation of a function defined at a point
s of the upper plane, to a poiathat may be in the lower plane. The analytic extension of an operator
depending on a complex variakteshould always be understood in the weak sense. For example
(plcont o+, ,R(S)|¥) = contc+_, ,{@|R(s)|¥) wherep andyr are suitable test functions.
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For simplicitywe assuméhat R (z) has a single simple pole at= z; in the
lower complex half plane, and therefoRe (z) has a simple pole &= z, in the
upper complex half plane. Correspondingly!) has a pole atg and(Z"| has a
pole atz.

Gamow vectors are usually defined through a contour deformation (Bohm,
1986; Bohm and Cadella, 1989). Going back to Eq. (6), we can deform the integral
path overR™ corresponding to the variable into an integral over a curve in
the lower complex half plane plus an integral over a closed contour surrounding
clockwise the pole at. Therefore, the amplitude to find the staig) in the state
¥ becomes

A(t) = (¥] exp(-i HD)lg)
= § dZexpizwiz) 2 lo) + [ dZepizw iz 2 o),
or equivalently
A(t) = (¥ expiHt)lp)
= expl-izat) ] fo) (Fole) + fr dZ expiz )W) (frle),  (12)
where

(fole) = conty_z (@™ le),

(¥] fo) = (=2ri)cont, . 5 (0" — 20)(¥|w™),

(f2le) = contyz (' F|p),

(Y| fz) = conty(Y|w™), ZeT. (13)

The complex conjugate amplitude is given by
At) = (plexp{Ht)lg)
— expiZ) (¢l T folv) + [ dz expCriziplFa (b, (19
where

(o] o) = cont,_z(ple'™),

(folyy) = (+2ri)cont, . z,(w — Zo) (@™ |¥),

(¢l f21) = cont,,z(plw™),

(f,lv) = cont,, (@t |¥), zeT. (15)
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It is easy to show that the functionals defined in Egs. (13) and (15) are gen-
eralized eigenvectors of the Hamiltonian with complex eigenvalues, i.e.

(folH = zo(fol,  H|fo) =z fo),

(fzIH=2(f;|, H|f,)=Z|f,), Zel.

Hifo) = Zol fo),  (folH = Zo( fol,

HIf,) =zf), (f,/H=2z(f,], zeTl. (16)

Moreover, for vectorsy andg with “ Hg representations” for which the functions
¥ (w) andp(w) have well-defined analytic extensions to the lower complex half
plane, we can write

(Wlp) = (¥l fo)( fole) +/Fdz<w| ) (f2l0) = (Wllexdlp),

lext = |fo><f”o|+/dz| (.
T

The generalized eigenvectors bif with the eigenvaluegy and zy, associated
with the simple poles of the analytic extensions of the resolvent to the lower and
the upper complex half plane, are usually called “Gamow vectors.” From their
definition we see that they are antilinear functionals.

It is important to note that while the amplitud&t) above is well defined,
the Gamow vectors diverge for growing values of the coordinates. For instance, in
the case of a one-dimensional problenRih where the potentiaV has compact
support, in coordinate representation one obtains

(x| fo) ~ explHi/zoX), (folX) ~ explti/zoX), 17)

i.e. an oscillating function modulated by a growing exponential. Therefore, if one
attempts to define the “norm” of the functiondy) by ( fo| fo) = f0°° dx{ fo|x)

(x| fo), the exponentially growing integrand would give an infinite value. The
“matrix element” ( fo|H| fo) is also divergent and the internal producfb| fo)

is not defined due to the oscillatory and diverging terms. These quantities are
mathematically ill defined because they are “functionals acting on functionals.”
Expressions likgy | fo) or (fole) are generally well defined, at least for well-
behaved “test vectorg andy. For these test vectors, Eg. (12) gives a well-defined
complex spectral decomposition of the transition amplitddg). The survival
amplitude can be obtained from Eq. (12) with= y». Moreover, if§zo « Rz,

it can be proved that for intermediate values of the time, the complex eigenvalue
Zy gives the main contribution to the survival probability of a pure state (Khalfin,
1958), i.e|(p| exp(iHt)|p)|? = exp(~TI't) wherel’ = 2|Fzo|.
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3. MIXED STATES AND GAMOW VECTORS

In the previous section, we considered the usual definition of Gamow vectors
as functionals acting on wave vectors. We saw the problems to define the norm and
the energy of those vectors. Here we will proceed with an attempt to use Gamow
states to describe density operators.

If we represent the initial pure state by the density operadce |¢){¢|, the
time dependent density operatords= exp(—iHt)gexp(iHt). Analogously,
if we define the projectorl, = | )(y |, the probabilityP(t) given in Eq. (6) can
also be obtained as

P(t) = Tr(pcI1y), (18)
and therefore using the same techniques as in the previous section we obtain

P(t) = Tr(otITy) = (@l expEHiHL)[y) (V] expEiHt)le)
= expli (zo — 20)t] (¢! fo) ( fol¥) (¥ fo)  fol)

+frdz’expﬂ(fo — 2)tlel fo) (foly) (w] f2)(f 1)
+/I;dzexp|](z_ZO)t]<(P|Fz><fz|w><w|f0><Fo|(P>

+/F,dz/FdZexpﬁ(z—i)t]<¢|f”z><fz|¢><w|fzf><f}|¢>. (19)

One is tempted to generalize to more general cases the expression given in
Eqg. (19),which is valid to compute transition probabilities between normalized
pure statesFor example, in the one-dimensional problem, we may try to compute
the probability to find the particle at a distance greater tRaat a timet (this is
equivalent to have detected the particle passing the pobsfore the time). To
compute this probability using Gamow vectors, we may try to replace in Egs. (18)
and (19) the projectdr,, = |vy)(y| by the projectollr «) = fé" dx|x) (x| onto
a setof states localized at a distance greaterfhang. outside the potential barrier
which produces the resonance. But then we find new problems: divergent terms
appear. For instandg|I1r )| fo) = f§° dx({ fo|x) (x| fo) = oo, due to the expo-
nentially growing factof fo|x) (x| fo) ~ expi[./Zo — v/Z0]X). The same kind of
troubles appear if one tries to compute the conserved total probabiliy) Ee(
Tr(pc1) = 1 by replacing the projectdi,, by | = f0°° dx|x)(x] in EQ. (19).

We thus realize that the use of Gamow vectors to compute the time evolu-
tion of mean values for observables which are not the simple projection onto a
normalizable pure state, cannot be the straightforward generalization of Eq. (19).
This implies that if one wants to include resonances in the time evolution of ob-
servables, a different approach is needed. In the rest of this paper we will use a
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suitable formalism, already introduced in Antonieual. (1997) and Laura and
Castagnino (1998b), to deal with general observables and to compute their time
evolution using complex eigenvalues. We will also give a precise meaning to the
energy and probability of the “generalized Gamow states.”

4. GENERALIZED STATES AND OBSERVABLES

The expressions given in Egs. (2) and (3) for the operatptdy, andH,
suggest that it is necessary to consider a general form for the self-adjoint operators
representing observables of the system, namely

0= /da) O,|w)(w| +/dw/da)/ Ouw @) ('], (20)

whereQ,, = O, andQ,,, = O,,. The first term in this equation can be written
as [ dw [dw' O,8(w — o')|w)(w'|. Since it contains a Dirac delta, we will call it
the singular term The second term has no singularity becaQgg is a regular
function, and therefore we call this the regular term.

Let |v4) be a pure state vector amg the probability of the quantum system
to be in this pure statea(=1, 2,..., Zapa = 1, (¥a|¥a) = 1). In this case, the
state of the system can be represented by the density operator

p=_ Paltra)(Val. (21)

The mean value of an observable represented by an op&aibthe form given
in Eq. (20) is

(0), = Tr(p0) = / do [Z pa<w|wa><wa|w>} 0.,

+ / do f do [Z pa<w’|wa><wa|w>] O

Defining
po =Y Pal@lVa)(Valo),  pow = Y Pal@|Va) (Yalo),

the mean value of the operat@rcan be written in the compact form

<O>p :fdwpwow+/dw/dw/pww’oww/- (22)

From a more general point of view,, and p,., can be considered as the
“components” of dinear functional(p|, acting on the observablg) which is
defined by its own “component®,, andO,,, . The action of the state functional
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on the observable provides the mean valdg, = (p|O). In this approach, it is
convenient talefinethe “generalized observables”

o) = o) (0], |wo) = o). (23)

in such a way that the observalilecan be written as

|0)=0 = /da) Owlw)+/dw/dw’ Oy |ww'). (24)

Therefore [w), |@, ) is the basis of the spac2of the observables with diagonal
singularity. Itis also useful tdefinethe generalized states|(&nd w’| satisfying
the relations

(»|0) = 0,, (0a'|0)= Opp. (25)

It should be emphasized that according to these definitian©)# (v|O|w)
and waw'|O) # (w|Olw’). Moreover, using Eq. (20) we obtaiw|O|w’) = O,
3(w — @) + O,., and thereforéw|O|w) is not even defined. Using the general-
ized states defined in Eqg. (25), the state functional reads

(01 = [ dopu(@l+ [ do [ 6puun @ (26)

The “states” (¢], (a)f,\c/o’|) form a basis for the dual of the observable space,
namely the state space. ~

The generalized states|({w, «’| and observablegy), |ww’) form a com-
plete biorthonormal system to describe observables and states of the form given in
Egs. (24) and (26). It is straightforward to verify the orthogonality and complete-
ness conditions

(B|0) = 8(w — @), (ea'|ee’) = 8(w — )80 — &), (Blee’) = (ww'|e) = 0,

27)
(oIl = (010) = (pI1[O), T = / dolo)(@] + f do / doj0w)@a'], (28)

wherel is theidentity superoperatofnot to be confused with the identity operator
| = [ do|w)(wl]).

Up to this point, we have only presented an alternative mathematical frame-
work for the description of states that can be also described in terms of the well-
known density operator given in Eq. (21). However, we will show in what follows
that the spectral decomposition of the time evolution of a quantum system with
continuous spectrum includes generalized states which are functionals, and which
can not be described by the usual density operators. The well-known conditions
Trp =1 andpt = p for the density operator, must be replaced in this formal-
ism by the conditions dfotal probabilityandreality on the state functionals (see
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Antoniouet al,, 1997; Laura and Castagnino, 1998b, for details)

(pI1) =1, (p|O") = (p]O).

From these two conditions one obtains that the components of the states should
satisfy [ dw p, = 1, pw = P, aNdp,w = Paw . Thepositivity condition remains
the usual one, i.ea, = o, > 0.

The time evolution of the state functionals is obtained from the equation
(pt10) = (k0| Or) = (pol explH-iH)O exp(-iHt))
= (pol exp(iLt)0), LO =[H, O], (29)

relating Schodinger and Heisenberg representations.

The basis given in Egs. (23) and (25) can be used to represent the Liouville—
von Neuman superoperators corresponding to the Hamiltoriigrend H. We
easily obtain

Lo=[Ho, ]= /dw/dw/(a)—w/)m/)(a%q.

From this expression we conclude that the basis of Egs. (23) and (25) are
generalized eigenvectors b§:

Lolww') = (0 — o)|0w'), (0oL = (0o'|(® — o),
Lolw) =0, (&|Lo=0.

There is a more complicated expression for the superopétator
L=[H, 1= fdw/dw’(w—w')|ww’)(c;5/|
+ [ do [ dol00)Vau (@1 - @1

+/dw//[vww”(a)7(;)/| - Vw”w’(a;;)//,]}'

In the next section we will construct a basis of generalized left and right
eigenvectors of..

5. GENERALIZED REAL SPECTRAL DECOMPOSITION
OF THE TIME EVOLUTION

If we compute the matrix elements of an operafiof the form given in
Eqg. (20) in theHy representation, we obtaifw|O|w’) = §(w — @')O,, + Oy
(where the singular and the regular term appear naturally). If one used the
representation, the matrix elemefat™|O|w ™) also include the singular term
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8(w — )0, and therefore there is a term of the foflw O, |w™)(w™| in the
operatorO. This term is time independent in the Heisenberg representation.

Since Gamow vectors are exponentially decaying states they cannot be con-
tained in the time-independent term. We, therefore, separate the time-independent
from the time-dependent part of the observables, hoping to find the generalized
Gamow states in the time-dependent part. To do this we define the invariant and
the noninvariant or “fluctuating” parts @ as follows

Oy = f d O,lw*) ("], Ofue = O — Opy. (30)
The matrix elements oDy, are

(@™ |Ofiucle™) = f de[(@[e)(elw™) — 8(w — £) 8(e — )] (E]O)

+/dsfde’(wﬂs)(a’lw'*)(££/|O). (31)

The time-dependent contribution to the mean value is given by the fluctuating
part since it is

(O) = (pole™™MtOe M)

= (ol Oinv) + (pole™' Opyce™ ) = /dw(00||w+><w+|)0w

+ / do / da'€ @ (po||wt) (@ * ) (™| Opucler™). (32)

Let us define the followingeneralizedstates and observables
|®,) = 0" ) (@],
(Do = (@1,

|Poer) = lo") (@],

(| = / del (o |e) (el’) — (e — )3(e — )](E

+/de/ds/<w+|8)(e’|w’+>(££/|. (33)
From Egs. (30)—(33), one gets the compact form

(O} = (n]O) = / do> (polP) (4|0

4 / do / '€ @M (o] By ) (B |O). (34)
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In the next section we will see that the Gamow vectors are contained in the analytic
continuation of the last term.

The generalized states and observables defined in Eq. (33) have interesting
properties.

(i) They form a complete biorthogonal system for observables and states.

Itis easy to use the orthogonality and completeness relations givenin Egs. (27)
and (28) to prove that the generalized states and observables just defined by Eq.
(33) satisfy

(&)w|&)w’) = §(w — ), (&)ww’|&)ae/) = 8(w —e)8(w’ — &),
(&)w|q~>ss’) = (&)88/|&)w/) =0. (35)

The identity superoperatdr already defined in Eq. (27), can be written in
the form

I= / dow|®,) (.| + / dow / A’ | P ey ) (P |- (36)

(i) They provide the spectral decomposition of the time evolution generator.

In the Heisenberg representation the time evolution of an obser@abi¢he
form givenin Eq. (20) is given b®; = exp(iHt)O exp(—iHt) = expiLt)O,
wherelL is the Liouville—von Neumann superoperator, definedl@y= HO —
OH.ltis

L= f dow f do' (@ — @) Py ) (Pever |- (37)

Therefo[e|<1>,,,)((<f>,,,|) is a right (left) eigenvector df. with zero eigenvalue, and
| D ) ((Powe |) is a right (left) eigenvector di with eigenvalued — «’). Gamow
vectors will be also eigenvectors bfbut with complex eigenvalues.

(i) The generalized staté®,,| and(®,,., | have well defined physical properties.

Any state functional can be written as the linear combination
(0l = (Il = [ dolo1®)Bol + [ do [ dof(p1®uu)(Bocr,

and therefored,,| and (&Jmﬂ can be considered as a basis of generalized states.
The generalized stat@®(,| satisfies

(®,11) = (. f do'[0) (@]) = (o] f do|)

= [ dof(@1o) = [ dw'sio-w) =1
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(D,|H) = (o] |:/ do'o’|o') +/dw’/dw”Vwrw~|a)'a)")i|

= /da)’w’(&')|a)’|) + / do’ / do"V,y p (@]’ "

= / do'o'§(w — ') = w.
Therefore {,,| verifies the total probability conditioni(,|1) = 1 (the generaliza-
tion of the condition Tp = 1 for usual density operators). The mean value of the
energy is(H) = ®,|H) + w. Moreover, one can show th&at") = (&, |H") =
o"(n=1,2,...), which implies((H — (H))") = 0. In summary, the mean value
w of the energy has no dispersion, and one can say that the generalizedgtate (
hasenergyw. It is clear from the definition that this is a generalized state that
cannot be represented neither by a normalized wave function nor by a density

operator. B
The generalized state(,,, | satisfies

(Buusl1) = (Buus| [ de'e)
= [ deltwtledelor) = 8 - )56 ~ NG [ de'e)
= [ delto" le)elor ) - 3w~ e)ste — o)
= /ds(a)+|g)<e|a/+) —/de 8(w — £)8(s — o)

= 8w — o) — 8w — ') =0.

(o [H) = / del(w* e} (el'™) — 5w — £)5(e — )]s

+ /de/ds/(w+|8)(8’|w/+)vgg/

— ("] [/ de ele) c|

+ /dsfds’VSEr|8)(s’|i| ') — 8(w — oo
= (@"|H|o™") — §(w — ") = 0.

As we obtained®,.,|1) = 0 and {..,|H) = 0, we conclude that this functional
cannot represent by itself a physical state, since it has zero probability and zero
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energy. Gamow vectors will inherit these rigorous mathematical properties as we
will see in the next section.

(iv) For very long times, they provide a suitable representation for the “final”
state.

If (ool ®ye) and @wwr |O) are regular functions of the variablesandw’, the
second factor of the expression given in Eq. (34) for the time-dependent mean
value (O); of the observable tends to vanish for very long times, due to the
rapidly oscillating factord =) inside the double integral. Therefore, we ob-
tain limy_ o (00| O) = fda)(,oo|<l>w)(&>w|0), or (in the weak sense)

(ool = im (o1 = [ doo(pol®0) (B0 .

Therefore, the component®(,, | of the state are eliminated during the
time evolution, and the apparently “unphysical” propertiés,{|H) = 0 and
(®,./|1) = 0 discussed above, are now found to be essential for energy and prob-
ability conservation, i.e.

(H) = (polH) = (pt|H) = (0o |H), (1) = (poll) = (x|l) = (pocll), = 1.

6. GENERALIZED COMPLEX SPECTRAL DECOMPOSITION
OF THE TIME EVOLUTION AND GAMOW STATES

We obtained in Eq. (34), the spectral decomposition of the mean value of an
observable, i.e.

(O} = (]O) = /0 " do(pol @,)(6,10)

+ / do / dw/ ei (o) (p0|q)ww’)(&>a)w’ | O) (38)
0 0

_ We wish to deform the integral ové&™" for the variablex'(w) into a curve
(") in the lower (upper) complex half plane. Therefore, we need the following
analytic extensions

(p0|q)ZZ) = Contuezcontu’ez’(pdq)ww/)y (39)
(®,710) = cont, ., ,€0Nt,— 7 (P |O). (40)

If ze C* andZ e C~, the definitions of/®,,.,) and @../| given in Eq. (33)
enable to prove thapg| ) is analytic and ¢,,|O) has simple poles far = 7,
andZ = z;. These are the simple poles of the extensi®1$z) and R*(z) of
the resolvent, already defined in Eq. (10). It is, therefore, possible to deform the
integrals over the real variables andw into the integrals over the curv&sand
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T, plus the contributions of the residues of the simple poles. Finally, the following
expression is obtained for the time evolution of the mean value

([0) = /O "~ do(pol @,)(,10)
+ @2 (] Do) (Dol O)

n / dZ6 @2 (55 oz )(Boz| O)
r

+ / 0z 82 (| d,0)(P10] O)
r

+ [ a2 [ a2ee D pol020) (2110, (41)
To obtain this last expression, the following functionals were introduced

(Pol®Po0) = €ONt,—.7,C0Nt— 2, (Pol Pur) = (ol | fo) ( fol),
(P00l O) = cont,.z,cont, 7,47 %(w — Zo)(@' — 20)(Paer |O)

= (fol(O — Oinv)! fo),
(0ol ®oz) = coNt,.zC0Nt, 2 (po| Puer) = (ool | fo)( f21),
(Poz|0) = cont,.z,cont,.z(27i)(@ — Zo)(Peur |O)

= (fol(O — Oinv)| f2),
(00| ®20) = €ONt, -, 2€0Nt, 25 (00] Parr) = (0l F2) (Fol),
(2010) = cont,,,cont, (=271 )(@ =" —20)(Puer |0)

= (f21(O — Oinv)| fo),
(x| P27) = cont,...cont, .z (ol Pur) = (ool F2) (F21),
($27]0) = cont,.zcont,—.z($uw|0) = (f2I(0 — Ol fz).  (42)

Itis important to notice that in the definitions of these functionals the analytic
continuations should be understood in the weak sensehieegnalytic continua-
tions must be performed after the application of the functiofls,) and @ ., |,
depending on the real parametessand’, to suitable test function®| and|O).
This is clear from the fact that the new spectral decomposition given in Eq. (41)
was obtained using the Cauchy theorem.

Equation (41) provides an alternative spectral decomposition to the one given
by Eq. (38), where the resonancegz@andz, explicitly appear. Sincgy — zg =
—2i§20, and by definitior§zy < 0, (&)00| is an exponentially decaying mode and
therefore a generalized Gamow state. This decomposition has the same properties
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as the one in the previous section, namely
(i) They form a basis for observables and states.

The identity superoperatd@rcan be written in the form

I= / do|®,)(D,| + [Poo)(Pool + / dZ|®ey)(Poz|
I

+ / 21D 10)(B 0] + / dz [ dZ|®,,) (@1, (43)
I r I

(ii) They provide the spectral decomposition of the time evolution generator.

L = (% — 20)|Poo)(Fool + (o — 2) / 4Z|Poz) (Foz |

+/FdZ(Z—ZO)|@zo)(q>zo|+/fd2frd2’(2—2/)|q)zz)(q)zz|- (44)

Therefore ®g0)((Pool) is a right (left) eigenvector df with eigenvalueg — zo =
—2iF70, |Poy)(Poz]) is a right (left) eigenvector oL with eigenvalue , —
7), |90)((P0]) is a right (left) eigenvector of. with eigenvalue £ — zy), and
|®,,)((P,2]) is a right (left) eigenvector of. with eigenvalue £ — z'). Gamow
state (bgo| will give the exponentially decaying term of the evolution.

(i) The generalized states have well defined physical properties.

We have proved in the previous section that,{ |H) = (®u.|1) = 0, i.e.,
that the generalized state$ | have zero probability and zero energy. This
property is also verified by the new generalized state|( (Poz|, (P,0|, and
(®,,], as they are obtained by analytic extensions of the functiobg),( (the
analytic extension of zero is zero!). A&¢o|1 ) = 0 and (go|H) = 0, we conclude
that the generalized Gamow state cannot represent by itself a physical state since
it has zero probability and zero energyhey are jususeful mathematical tools
in the spectral decompositioithen their nature ipurely mathematicadnd it is
not strange that their properties look unphysical.

(iv) They provide a suitable representation to describe the asymptotic (in time)
behavior of a state.

As in the previous section, only the first term of Eq. (41) remains when
t — oo, and we also obtaillV [im_, .. (ot| = [ dw|P,)(D|.

4The rigorous property&éoo| 1) = 0 substitute in our formalism the dubious offg| fo) = 0.
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7. CONCLUSIONS

We have shown the difficulties of the complex spectral decomposition of pure
states to compute the mean values of an observable with diagonal singularity, and
therefore the problems to give a meaning to the probability and the energy of the
Gamow vectors. The problem remains with the usual mixed states.

However, the key for the solution of the problem is to search for the gener-
alized left and right and right eigenvectors of the Liouville—von Neumann super-
operator (in other words the generalized “eigenstates” and “eigenobservables” of
the guantum system), in a formalism where observables with diagonal singularity
are included. The states of this formalism are not the usual density operators, but
functionals acting on the space of observables. The eigenvectors corresponding
to the zero eigenvalue expand the time-independent part of the mean values of an
observable. In this formalism, we obtain what we ¢gheralized Gamow states
generalized left eigenvectors of the Liouville—von Neumann superoperator with
complex eigenvalue. These generalized states have no component in the time in-
variant space, and therefore they have zero energy and zero probability. In other
words, in this formalism the complex eigenstates are correlations, and can not
appear as single physical states. A physical state may have a generalized Gamow
state as a component, but it should always include time invariant part.
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